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An approximate procedure of mathematical modeling of radiative and radiative-convective countercurrent heat
exchange in metallurgical units has been given.

Heat exchange of solid bodies and a gas in their countermotion is quite frequently realized in various
branches of technology and primarily in metallurgy. Examples of such processes are heating of round billets in annular
furnaces before piercing, heating of a burden in blast furnaces, cooling of pellets in stack-type coolers, etc. In exact
solution, these problems are considered only in a linear formulation, whereas the processes themselves are nonlinear.
This is because of the difficulties appearing in their nonlinear mathematical modeling. The arising complications can
be successfully solved with the method of equivalent sources [1–3], which has been adequately tested in problems of
concurrent and countercurrent heat exchange (CCHE).

Radiative Countercurrent Heat Exchange. Let us consider the problem of countercurrent symmetric radia-
tive heating of thermally massive bodies of a base shape in the following formulation [1–3]:
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dθg

dτ
 = Sk [θg

4
 (τ) − θs

4
 (τ)] nm , (3)

θ (ρ, 0) = θ0 = θ′ = const ,   θg (0) = θg
′′  = 1 , (4)

where we have

θs (τ) = θ (1, τ) ;   θ (ρ, τ) = 
Tm (ρ, τ) − Tm

′

Tg
′′ − Tm

′
 ;   nm = (1 + m) n ;   ρ = 

r

R
 ;
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τ = 
at

R
2 ;   Bi = 

αR

λ
 ;   θ (ρ, τ) = 

T (ρ, τ)

Tg
′′

 ;   θg (τ) = 
Tg (τ)

Tg
′′

 ;   Sk = 
σvTg

′
3

R

λ
 . (5)

The parameter nm allows for the relation of the heat capacities of a solid body and a gas moving in opposi-
tion.

In the method of equivalent sources, which represents a combination of the method of successive approxima-
tions and the integral methods, it is taken that the inertial step of heating is completed after a certain time τ0 and an
ordered step of warmup over the entire body begins.

In the first inertial step of heating (0 ≤ τ ≤ τ0 and β(τ) ≤ ρ ≤ 1), we use the ready solution of problem (1), (2)
by the method of equivalent sources [1–3]:

θ1 (ρ, τ) = θ′ + [θ1s (τ) − θ′] 




ρ − β (τ)
1 − β (τ)





2

 , (6)

l (τ) = 1 − β (τ) = 
2

Sk
 

θ1s (τ) − θ′

θ1g
4

 (τ) − θ1s
4

 (τ)
 . (7)

The surface temperature θ1s(τ) or the temperature difference ∆θ1(τ) = θ1s(τ) − θ′ is determined by solution of the dif-
ferential equation

d

dτ
 [∆θ1 (τ) l (τ)] = 

6 (1 + m) ∆θ1 (τ)
l (τ)

 . (8)

Equation (8) must be considered simultaneously with expression (7) and thermal-balance condition (3) but,
taking into account the usual rapidity of the inertial period for the majority of metallurgical objects, we can simplify
determination of the functions θ1s(τ) and θ1g(τ), assuming that the advance of the warmup front l(τ) satisfies a certain
existing law, which is represented in this case by the formula [3]

l (τ) = √6 (1 + n) τ  ,   τ0 = [6 (1 + n)]−1
 . (9)

Therefore, the solution of Eq. (8) has the form

∆θ1 (τ) = √ τ6 (1 + m)
 ,   θ1s (τ) = θ′ + √ τ6 (1 + m)

 . (10)

From relation (7) we find

Sk [θ1g
4

 (τ) − θ1s
4

 (τ)] = 
2∆θ1 (τ)

l (τ)
 . (11)

Then conditions (3) and (4) with account for (9)–(11) lead to the following expression for the gas temperature:

θ1g (τ) = 1 + 
n
3

 ∆θ1 (τ) l (τ) = 1 + 
nτ
3

 . (12)

In the second (ordered) step (τ0 ≤ τ < τ∗  and 0 ≤ ρ ≤ 1), the resolving equation of the method of equivalent
sources is taken in the form of [1–3]. Integrating this equation [1–3] with respect to ρ and using boundary condition
(2), we arrive at the solution
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θ2 (ρ, τ) = θ2s (τ) − 
Sk
2

 [θ2g
4

 (τ) − θ2s
4

 (τ)] (1 − ρ2) . (13)

The relationship between the functions f2(τ), θ2g(τ), and θ2s(τ) has the form f2(τ) = −(1 + m) Sk [θ2g
4 (τ) − θ2s

4 (τ)].
Substituting expressions (12) and (13) into the integral condition [2, (23)], we have

(1 + m) Sk [θ2g
4

 (τ) − θ2s
4

 (τ)] = 
d
dτ

 



θ2s (τ) − 

Sk
3 + m

 [θ2g
4

 (τ) − θ2s
4

 (τ)]


(14)

or, with the account for the heat-balance condition (13),

dθ2g (τ)
ndτ

 = 
d

dτ
 



θ2s (τ) − 

Sk

3 + m
 [θ2g

4
 (τ) − θ2s

4
 (τ)]




 .

Integrating this equation, we obtain

1
n

 θ2g (τ) + B = θ2s
4

 (τ) − 
Sk

3 + m
 [θ2g

4
 (τ) − θ2s

4
 (τ)] . (15)

The integration constant B is determined from the initial condition for the ordered step (τ = τ0). The solution
(13) for ρ = 0 yields

Sk [θ2g
4

 (τ) − θ2s
4

 (τ)] = 2 [θ2s (τ) − θ2c (τ)] = 2∆θ2 (τ) . (16)

Then expression (15) takes the form

θ2g (τ) = 

θ2s (τ) − 

2
3 + m

 ∆θ2 (τ) − B


 n . (17)

Equating the right-hand sides of formulas (12) and (17) at τ = τ0, l(τ0) = 1, and θ2s(τ0) = θ2s
0 , we find

B = θ′ − 
1
n

 + 
2m

3 (3 + m)
 (θ1s

0
 − θ′) . (18)

From the solution (13), we determine the mass-mean temperature of the body:

θ
~

2 (τ) = (1 + m) ∫ 
0

1

θ2 (ρ, τ) ρm
 dρ = θ2s (τ) − 

Sk

3 + m
 [θ2g

4
 (τ) − θ2s

4
 (τ)] . (19)

Comparing (15) and (19), we obtain

θ2g (τ) − nθ~2 (τ) = − Bn = const .

This result is consistent with the regularity noted in [4, 5]; it implies that in countercurrent, the equality

θ2g (τ) = nθ~2 (τ) + θm , (20)

where θm(Tm) is a certain arbitrary temperature (temperature parameter) having a constant value for the entire period
of heating [6, p. 67], holds at any instant of heating time.

Let us determine from (18) the value of θm:

θm = − Bn = 1 − nθ′ − 
2mn

3 (3 + m)
 (θ1s

0
 − θ′) , (21)
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which coincides with the expression θm = 1 − nθ′ given in [4] for m = 0 (for a plate). However, the value of the tem-
perature parameter θm in [4] is true here only for a planar shape of a body. For other shapes we must use the general
expression (21).

After eliminating the temperature function θ2s(τ) from (15), from condition (3) we find

θ2s (τ) = 

4√θ2g
4

 − 
1

nmSk
 
∂θ2g

∂τ
 . (22)

Then expression (15) with account for (21) and (22) takes the form

θ2g (τ) − θm = nθ2g (τ) 
4√1 − 

1

n (1 + m) Sk θ2g
4

 (τ)
 
∂θ2g

∂τ
 − 

1

(1 + m) (3 + m)
 
∂θ2g

∂τ
 . (23)

The investigations have shown that the second term of the radicand for massive bodies (when nSk > 0.1) is
less than unity. Taking this into account, we replace the radical involved in expression (23) by the first two terms of
its power series. In this case we have the following differential equation:

1 + 4 Sk θ2g
3

 (τ) ⁄ (3 + m)

[1 − kθ2g (τ)] θ2g
3

 dθ2g = 4 (1 + m) θm Sk dτ , (24)

where k = (1 − n)/θm.
The integral of Eq. (24) will be represented by the transcendental relation

Φg (τ) − Φg (τ0) = 4 (1 + m) 
θm

k
2

 Sk (τ − τ0) , (25)

in which

Φg (τ) = ln θ2g (τ) − p ln [1 − kθ2g (τ)] − 
0.5 + θ2g (τ)

k
2θ2g

2
 (τ)

 , (26)

where p = 1 + 4 Sk /[(3 + m)k3].
It is expressions (25) and (26) that determine the temperature function of the heat-transfer agent θ2g(τ) whose

initial value for the ordered step [(12) at τ = τ0] is already known.
To determine the temperature function of the surface θ2s(τ) from the gas temperature θ2g(τ) that is already

known we use Eq. (15) with account for (18):

θ2s
4

 (τ) + a1θ2s (τ) = a0 , (27)

where we introduce the notation

a1 = 
3 + m

Sk
 ,   a0 = θ2g

4
 (τ) + 

a1

n
 [θ2g (τ) − θm] . (28)

The algebraic equation (27) has a solution of the form

θ2s (τ) = 
1

2
 



√ 2a1

b1
 − b1

2
 − b1




 ,   b1 = √ u + v  , (29)
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where

u
v



 = 

3√a1
2

2
 % √D  ;   D = 





4a0

3





3

 + 




a1
2

2





2

 .

Knowing the functions of the temperatures θ2g(τ) and θ2s(τ), from the solution (13) for ρ = 0 we find the
temperature function of the center θ2c(τ):

θ2c (τ) = θ2s (τ) − 
Sk
2

 [θ2g
4

 (τ) − θ2s
4

 (τ)] . (30)

The mass-mean temperature of a body θ
~

(τ) is calculated from expression (19) or from (20) and (21):

θ~2 (τ) = [θ2g (τ) − θm] ⁄ n . (31)

Thus, the formulated problem (1)–(4) is solved.
The time τ∗  of completion of heating is determined by solution of (25) under the assumption that

θ2s
∗

 (τ) = θ2s (τ∗ ) = ηθ2g (τ∗ ) . (32)

Substituting θ2s
∗  = ηθ2g

∗  into (27), we arrive at an algebraic equation of the same form:

θ2g
∗

4

 + a1gθ2g
∗

 = a0g ,   a1g = 
3 + m

n Sk
 
1 − nη

1 − η4 ,   a0g = 
a1g − θm

1 − nη
 . (33)

Solution of Eq. (33) analogously to (29) determines the temperature θ2g
∗  of the gas at the instant τ∗  of com-

pletion of heating with a prescribed value η. Next, from expressions (25) and (26) we find

τ∗  = τ0 + 
k

2

4 (1 + m) θm Sk
 (Φg

∗
 − Φg (τ0)) .

(34)

Thus, we have obtained the analytical solution (generalized for all three shapes of base geometry) of the prob-
lem of countercurrent radiant heating of thermally massive bodies.

To evaluate the exactness of the solution obtained we have calculated the example taken from [5]:

m = 0 ,   n = 0.5 ,   Sk = 0.5 ,   θ0 = θ′ = 0.5 ,   η = 0.99 . (35)

The results of the calculation are presented in Fig. 1.

Fig. 1. Change in the temperature functions for the data of (35): 1) θg(τ); 2)
θs(τ); 3) θc(τ); 4) θ

~
(τ); 5) ∆θ(τ); points, results of [5].
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Based on the solution obtained in [6], we have investigated the dynamics of change of the functions θg(τ),
θs(τ), and ∆θ(τ) in the process of heating of a plate as a function of the parameters Sk and n and for θ0 = θ′. The
results of the calculations are given in Fig. 2. The plots obtained by a numerical method in [5] are also given in Fig.
2 for the sake of comparison. Figure 3 shows the distribution function F(ρ) = 1 − [θs − θ(ρ)]/(θs − θc) for two fixed
instants of time referring to the inertial (τ = 0.1) and ordered (τ = 0.4) steps of heating.

A comparison to the data of [5] shows that the analytical solution proposed for the problem of radiative coun-
tercurrent heating of thermally massive bodies yields results with an exactness sufficient for practice.

In this solution, functions (6) and (13) explicitly express the coordinate dependence of the temperature field
of a body, which enables one to apply this temperature function as a "load" function to investigation and calculation
of the thermally stressed state of a body.

Radiative-Convective Countercurrent Heat Exchange. Countercurrent heating of a metal is carried out, as a
rule, in an unheated (methodological) zone where heat exchange between the metal and low-temperature gases is car-
ried out in addition to radiation and with a considerable fraction of the convective heat flux.

Let us consider the previous mathematical CCHE model in which the boundary conditions of radiative heating
(2) and (3) will be replaced by the conditions of combined (radiative-convective) heat exchange

dθ
dρ



 ρ=1

 = Sk 



θg

4
 (τ) − θs

4
 (τ) + ζ [θg (τ) − θs (τ)]




 , (36)

dθg

dτ
 = Sk 




θg

4
 (τ) − θs

4
 (τ) + ζ [θg (τ) − θs (τ)]




 nm , (37)

where

ζ = Bi ⁄ Sk ;   Bi = 
αconvR

λ
 ; (38)

the remaining notation is the same as previously.
In the first (inertial) step (0 ≤ τ ≤ τ0 and β(τ) ≤ ρ ≤ 1), the solution by the method of equivalent sources has

the same form (6), where

l (τ) = 
2

Sk
 

θ1s (τ) − θ′

θ1g
4

 (τ) − θ1s
4

 (τ) + ζ [θ1g (τ) − θ1s (τ)]
 . (39)

The surface temperature (or the temperature difference) is also determined by the differential equation (8), which, after
substitution of expression (39), takes the form

Fig. 2. Change in the temperature functions θg (a), θs (b), and ∆θ (c) of a
plate with Sk number for n = 0.8 and θ0 = 0.5; solid curves, method of
equivalent sources, dashed curves, results of [5].
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d

dτ
 

∆θ1
2
 (τ)

θ1g
4

 (τ) − θ1s
4

 (τ) + ζ [θ1g (τ) − θ1s (τ)]
 = 

3

2
 (1 + m) Sk

2
 



θ1g

4
 (τ) − θ1s

4
 (τ) + ζ [θ1g (τ) − θ1s (τ)]




 . (40)

From the heat-balance condition (37), we find

Sk 



θ1g

4
 (τ) − θ1s

4
 (τ) + ζ [θ1g (τ) − θ1s (τ)]




 = 

1

nm
 
dθ1g

dτ
 , (41)

after which we can represent Eq. (40) as follows:

d

dτ
 

∆θ1
2
 (τ)

θ1g
4

 (τ) − θ1s
4

 (τ) + ζ [θ1g (τ) − θ1s (τ)]
 = 

3

2
 
Sk

n
 
dθ1g

dτ
 .

Integrating this expression and using initial conditions (4), we have

∆θ1
2
 (τ)

θ1g
4

 (τ) − θ1s
4

 (τ) + ζ [θ1g (τ) − θ1s (τ)]
 = 

3

2
 
Sk

n
 [θ1g (τ) − 1] . (42)

From expression (39), it follows that

θ1g
4

 (τ) − θ1s
4

 (τ) + ζ [θ1g (τ) − θ1s (τ)] = 
2∆θ1 (τ)

Sk l (τ)
 ,

after which we arrive at formula (12).
Let us take, as previously, that the advance of the warmup front l(τ) is described from (9), which results in

formulas (10) and (12).
In the second (ordered) step (τ0 ≤ τ ≤ τ∗ ), according to the basic version of the method of equivalent sources,

we obtain the solution [7, 8]

θ2 (ρ, τ) = θ2s (τ) − 
Sk
2

 



θ2g

4
 (τ) − θ2s

4
 (τ) + ζ [θ2g (τ) − θ2s (τ)]




 (1 − ρ2) ,

f2 (τ) = − (1 + m) 



θ2g

4
 (τ) − θ2s

4
 (τ) + ζ [θ2g (τ) − θ2s (τ)]




 .

(43)

Fig. 3. Distribution of the temperature function F(ρ, τ) over the cross section
of a plate for Sk = 0.5, n = 0.8, and θ0 = 0.5; solid curves, method of equiva-
lent sources, dashed curves, results of [5].
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Substituting the functions of (43) into the condition [2, (23)], we arrive at the differential equation

(1 + m) Sk 



θ2g

4
 (τ) − θ2s

4
 (τ) + ζ [θ2g (τ) − θ2s (τ)]




 =

= 
d
dτ

 



θ2s (τ) − 

Sk
3 + m

 (θ2g
4

 (τ) − θ2s
4

 (τ) + ζ [θ2g (τ) − θ2s (τ)])



 . (44)

Taking into account the expression (41) resulting from condition (37), we bring Eq. (44) to the solution

θ2g (τ)
n

 + B = θ2s (τ) − 
Sk

1 + m
 



θ2g

4
 (τ) − θ2s

4
 (τ) + ζ [θ2g (τ) − θ2s (τ)]




 . (45)

Setting ρ = 0 in θ2(ρ, τ) (expressions (43)), we find

∆θ2 (τ) = θ2s (τ) − θ2c (τ) = 
Sk
2

 



θ2g

4
 (τ) − θ2s

4
 (τ) + ζ [θ2g (τ) − θ2s (τ)]




 .

Then, from relation (45), we have

θ2g (τ) = 

θ2s (τ) − 

2
3 + m

 ∆θ2 (τ) − B


 n . (46)

Equating the right-hand sides of expressions (12) and (46) at τ = τ0 and l(τ0) = 1, we arrive at the integration
constant B determined by relation (18), after which we obtain

θ2g (τ) = 1 − 
2mn

3 (3 + m)
 ∆θ1

(τ0) + 
n

3 + m
 



(1 + m) [θ2s (τ) − θ2c (τ)] + (3 + m) [θ2c (τ) − θ′]




 . (47)

Let us find the mass-mean temperature of a body from the temperature function (43):

θ
~

2 (τ) = (1 + m) ∫ 
0

1

θ2 (ρ, τ) ρm
dρ = θ2s (τ) − 

Sk
3 + m

 



θ2g

4
 (τ) − θ2s

4
 (τ) + ζ [θ2g (τ) − θ2s (τ)]




 . (48)

Comparing expressions (45) and (48), we obtain the same formulas (20) and (21).
As we see, the law (20) is also true for a combined CCHT, and taking into account [9–13] devoted to a con-

vective HT, it is true for any countercurrent heating irrespective of the form of a boundary condition. We only note
that for other shapes of thermally massive bodies differing from a planar one the temperature parameter θm is deter-
mined by the more general expression (21).

Solving the problem further, from condition (37) we find the temperature function of the surface

θ2s (τ) = θ2g (τ) 
4√ 1 − 

1

nm θ2g
4

 (τ) Sk 



1 + ζ 

θ2g (τ) − θ2s (τ)

θ2g
4

 (τ) − θ2s
4

 (τ)





 
∂θ2g (τ)

∂τ
 . (49)

According to [3], we have

k1 = 1 + ζ 
θ2g (τ) − θ2s (τ)

θ2g
4

 (τ) − θ2s
4

 (τ)
 F 1 + ζ 

0.275 + 0.058m

Sk
 ,

after which expression (49) takes the form
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θ2s (τ) = θ2g (τ) 
4√1 − 

1

nmk1 Sk θ2g
4

 (τ)
 
∂θ2g

∂τ
 . (50)

Thus, from equality (45) with account for (12), (21), and (50) we have

θ2g (τ) − θm = nθ2g (τ) 
4√1 − 

1

nmk1 Sk θ2g
4

 (τ)
 
∂θ2g (τ)

∂τ
 − 

1

(1 + m) (3 + m)
 
∂θ2g (τ)

∂τ
 . (51)

Replacing the radical involved in the right-hand side of expression (51) by the first two terms of its power series, we
arrive at the differential equation with separable variables

1 + 
4k1 Sk θ2g

3
 (τ)

3 + m

[1 − kθ2g (τ)] θ2g
3

 (τ)
 dθ2g = 4 (1 + m) k1θm Sk dτ . (52)

After taking partial fractions of the rational-linear function on the left-hand side and integrating, we obtain a
solution of the form (25):

Φg (τ) − Φg (τ0) = 4 (1 + m) 
k1θm Sk

k
2

 (τ − τ0) , (53)

in which

Φg (τ) = ln θ2g (τ) − p ln [1 − kθ2g (τ)] − 
0.5 + θ2g (τ)

k
2θ2g

2
 (τ)

 , (54)

where k = (1 − n)/θm and p = 1 + 4k1 Sk /[(3 + m)k3].
It is the transcendental equations (53) and (54) that determine the temperature function of the gas θ2g(τ)

whose initial value θ1g(τ0) is known [(12) at τ = τ0].
Knowing the function θ2g(τ), we find the surface temperature θ2s(τ) of a body from expression (45), where

a1 = 
3 + m

Sk
 + ζ ;   a0 = θ2g

4
 (τ) + 

a1
n

 







1 + ζ 

nSk

3 + m




 θ2g (τ) − θm




 . (55)

The temperature of the body’s center is determined from expression (33) from the functions θ2g(τ) and θ2s(τ)
(which are already known) for ρ = 0:

∆θ2c (τ) = θ2s (τ) − 
Sk
2

 



θ2g

4
 (τ) − θ2s

4
 (τ) + ζ [θ2g (τ) − θ2s (τ)]




 . (56)

The mass-mean temperature of a body is calculated from expressions (48) or (20) and (21):

θ
~

2 (τ) = 
θ2g (τ) − θc

n
 . (57)

The time τ∗  of completion of heating is found from the solution (43) and (44) under the assumption that
θ2s
∗  = θ2s(τ∗ ) = ηθ2g

∗ .
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Substituting θ2s
∗  = ηθ2g

∗  into Eq. (27), we arrive at the same algebraic equation but now for θ2g
∗ . New coeffi-

cients have the form

a1g = 
3 + m

nSk
 
1 − nη

1 − η4
 



1 + ζ 

nSk

3 + m
 

1 − η

1 − nη




 ,   a0g = 

(3 + m) θm

nSk (1 − η4)
 .

We compute the value of θ2g
∗  from the solution analogous to (53) and (54), after which we find from Eq.

(53) the required time

τ∗  = τ0 + 
k

2
 (Φg

′′  − Φg
0)

4 (1 + m) k1 Sk θm
 . (58)

The formulated problem of radiative-convective heating of bodies under CCHE conditions is completely
solved, which enables us to calculate the functions θg(τ), θs(τ), θc(τ), θ

__
(τ), ∆θ(τ), and the time τ∗ .

To illustrate the use of the general solution obtained here we calculated [8] the heating of a plate for ζ = 1,
Sk = 0.5, and n = 0.5 (Fig. 4).

The calculation results reflecting the dynamics of the process of heating of massive bodies of different geome-
tries are presented in Fig. 4. The temperature difference over the cross section of an ingot is maximum at the end of
the inertial step of heating.

An analysis of the results shows that in countercurrent, too, heating of a sphere (m = 2) is the most intense
for the same characteristic dimension of the bodies. Decrease in the temperature difference in a plate is, conversely,
the slowest process.

NOTATION

a = λ ⁄ cγ, thermal diffusivity, m2/sec; Bi, Biot number; Fo, Fourier number; C, specific heat, J/(kg⋅K); D, in-
tegration constant; k, parameter; l, dimensionless thickness of the thermal layer; m, combining parameter of shape of a
body (m = 0, plate; m = 1, cylinder, and m = 2, sphere); n, ratio of the water numbers of the material and the gas;
nm, refined value of the parameter n, allowing for the parameter of shape of a body; R, half the thickness of a plate,
radius of a cylinder or a sphere, m; r, coordinate reckoned from the center of the body’s cross section, m; Sk, Stark
number; T, absolute temperature, K; t, time, sec; w, rate, m/sec; y, vertical coordinate, m; M, parameter; Φ, tempera-
ture function in the Kirchhoff substitution; α, heat-transfer coefficient, J/(m3⋅K); β, coordinate of the warmed-up layer;
γ, density, kg/m3; η = Tm

′′  ⁄ Tg
′ , degree of completeness of the heat-exchange process; λ, thermal conductivity, W/(m⋅K);

µ, root of the equation; θ, relative excess temperature; θ
__

m, relative mass-mean temperature of a body; ∆θ, temperature
difference; τ, dimensionless time; σv, visible coefficient of radiant heat exchange, W/(m2⋅K4); ζ = 1 − ρ; ρ, dimension-
less coordinate. Subscripts and superscripts: g, gas; m, material, solid body; s, surface of a body; m, ambient medium;

Fig. 4. Temperature dynamics of variously shaped bodies in radiant-convective
CCHE (n = 0.5): 1) plate; 2) cylinder; 3) sphere; a) furnace (gas) temperature;
b) surface temperature; c) temperature differences.
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c, center of a body; i, No. of warmup step (inertial i = 1 or ordered i = 2); ′ and ′′ , values at entry and exit respec-
tively; 0, initial value; *, completion of heating; conv, convective; v, visible.
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